Home
Search results “Nitrogen hydrogen bonds”
Hydrogen Bonds - What Are Hydrogen Bonds - How Do Hydrogen Bonds Form
 
02:48
In this video we discuss hydrogen bonds. We cover how do hydrogen bonds form, the different elements that take part in hydrogen bonds, and why doesn't oil and water mix. What are hydrogen bonds? An attractive force called a hydrogen bond can exist between certain molecules. These bonds are weaker than ionic or covalent bonds, because it takes less energy to break these types of bonds, however, a large number of these bonds going on can exert a strong force. Hydrogen bonds are the result of an unequal charge distribution on a molecule, these molecules are said to be polar. If we look at a water molecule, we can see the oxygen atom shares electrons with 2 different hydrogen atoms. So, in total this molecule has 10 protons, 8 from oxygen and 1 each from the hydrogen atoms, and a total of 10 electrons, 2 shared between the oxygen atom and hydrogen atom number one, 2 shared between the oxygen atom and hydrogen atom number 2, and the other 6 non shared electrons from the oxygen atom. So, this water molecule is electrically neutral, but it has a partial positive side, the hydrogen side, and a partial negative side, the oxygen side of the molecule. The electrons are not shared equally within the molecule, as they have a higher probability of being found closer to the nucleus of the oxygen atom, giving that end a slightly negative charge. So, the hydrogen atoms end of the molecule will have a slightly positive charge. These charged ends weakly attach the positive end of one water molecule to the negative end of an adjacent water molecule. When water is in liquid form there a few hydrogen bonds, solid form, many bonds, and when water is steam or gas, there are no bonds, because the molecules are too far apart to form any bonds. Hydrogen bonds only form between hydrogen atoms that are covalently bonded, or bonds where electrons are being shared and not transferred, to an oxygen, nitrogen or fluorine atom. These bonds make water ideal for the chemistry of life. Hydrogen bonds are also important in the structure of proteins and nucleic acids, which we will cover in later videos. So, now we know that water molecules are polar, or have slightly positive and slightly negative ends, and in fact, many lipids, or fats and oils, are not polar. So their molecules share electrons equally in their bonds. So, these are nonpolar molecules. This means that when water and oil come together they do not form bonds with one another. Even when we try to mix them, the water molecules will eventually separate because their polar molecules are attracted to one another and will form hydrogen bonds, separating the water and the nonpolar oil molecules.
Views: 68165 Whats Up Dude
Covalent Bonding of Hydrogen, Oxygen & Nitrogen | Chemistry for All | The Fuse School
 
03:25
Learn the basics about the covalent bonding of hydrogen, oxygen and nitrogen as a part of the overall topic of properties of matter. The noble gas structure and covalent bonding is also discussed. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind The Fuse School. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
Hydrogen Bonds In Water Explained - Intermolecular Forces
 
10:54
This chemistry video tutorial provides a basic introduction into hydrogen bonding. Hydrogen bonding occurs in molecules when hydrogen is attached to highly electronegative small atoms such as nitrogen, oxygen, and fluorine. Hydrogen bonds are very strong dipole dipole interactions. Molecules that contain hydrogen bonds such as water are very polar. Hydrogen bonds is one of the strongest types of intermolecular forces. This video contains a few examples and illustrations of hydrogen bonds in water and in HF. New Chemistry Video Playlist: https://www.youtube.com/watch?v=bka20Q9TN6M&t=25s&list=PL0o_zxa4K1BWziAvOKdqsMFSB_MyyLAqS&index=1 Access to Premium Videos: https://www.patreon.com/MathScienceTutor Facebook: https://www.facebook.com/MathScienceTutoring/
Hydrogen Bonding and Common Mistakes
 
09:00
To see all my Chemistry videos, check out http://socratic.org/chemistry Hydrogen bonding can be so confusing, and in this video we talk about some common mistakes. Hydrogen bonds are intermolecular forces between molecules. They form because one atom has a high electronegativity, so it gets a partial negative charge, and the hydrogen gets a partial positive charge.
Views: 525619 Tyler DeWitt
Ever Studied Hydrogen Bonding with Pizzas?
 
06:27
Let’s talk about the electronegativity and charge density of Nitrogen and Chlorine and also how Hydrogen bonding influences the corresponding atoms… Sounds serious? Then, let’s look at the same but with a twist. Let’s try to understand them by using a pizza! We at Byju's Classes strongly believe that a spirit of learning and understanding can only be inculcated when the student is curious, and that curiosity can be brought about by creative and effective teaching. It is this approach that makes our lectures so successful and gives our students an edge over their counterparts. Our website- http://www.byjus.com/ Download our app on android- https://goo.gl/5Uz70E Download our app on an Apple device- https://goo.gl/2mLi1I
Views: 46048 BYJU'S
Oxygen, Nitrogen & Carbon and Covalent Chemical Bonds
 
17:51
This chemistry tutorial video explains how oxygen, nitrogen & carbon make covalent chemical bonds to school & science students . The video shows how the protons and electron shells, and especially the number of electrons in the outer shells determine how many bonds oxygen, nitrogen and carbon can make. Four important molecules, water H2O, ammonia NH3, and methane CH4 are discussed. Subscribe to watch more online chemistry courses & science videos: http://www.youtube.com/channel/UCiX8pAYWBppIbtUZTfGnRJw?sub_confirmation=1 About Atomic School: Atomic School supports the teaching of Atomic Theory to primary school & science students . We provide lesson plans, hands-on classroom resources, demonstration equipment, quizzes and a Teacher's Manual to primary school teachers. Animated videos that clearly explain the scientific ideas supports learning by both teachers and students. As a teacher, you don't have to look anywhere else to implement this program. Our work has been verified by science education researchers at the University of Southern Queensland, Dr Jenny Donovan and Dr Carole Haeusler, who confirm that primary students are capable of learning much more complex scientific concepts than previously thought, and crucially, that they love it. Students run to class! The program has been trialed in Australian schools as well as schools in the Philippines, Iran and India. It is conducted as holiday workshops at the Australian Nuclear Science and Technology Organisation, the Queensland Museum as well as the World Science Festival. It has attracted wide media interest, including TV, radio and print, and the research data has been presented at prestigious American Education Research Association and Australian Science Education Research Association conferences. Atomic Theory underlies all the other sciences- genetics, electronics, nanotechnology, engineering and astronomy- so an early understanding will set them up for a more successful learning sequence for all their science subjects, and support their mastery of mathematics as well. We also have extension programs that cover Biology, Physics and Astronomy to an equal depth. About Ian Stuart (Email: [email protected]): The founder of Atomic School, Ian Stuart, taught Chemistry and Physics for 25 years at senior levels before he realized that his 8-year old son, Tom, could understand Atomic Theory at a much deeper level than he expected. After visiting Tom's class at school, he discovered that his peers could also grasp the abstract scientific concepts, as well as apply it usefully to the real world. Ian then developed a program to teach the advanced concepts of high school Chemistry, Physics and Biology to students 10 years younger than they normally would. He found that this engaged their interest in modern science early, and sustained it through to high school and beyond. It also sets them up for future success in their academic and career paths. Ian has a Bachelor's Degree in Chemistry from the University of Queensland and a Master's degree in Electrochemistry from the University of Melbourne. Connect with Atomic School on social media: http://facebook.com/AtomicSchool http://twitter.com/AtomicSchools http://instagram.com/AtomicSchools Video transcript:
Views: 131542 AtomicSchool
Intermolecular Forces - Hydrogen Bonding, Dipole-Dipole, Ion-Dipole, London Dispersion Interactions
 
45:36
This chemistry video tutorial focuses on intermolecular forces such hydrogen bonding, ion-ion interactions, dipole dipole, ion dipole, london dispersion forces and van deer waal forces. It contains plenty of examples and practice problems to help you understand the most important concepts related to this material. General Chemistry Video Playlist: https://www.youtube.com/watch?v=bka20Q9TN6M&list=PL0o_zxa4K1BV-uX6wXQgyqZXvRd0tUUV0&index=3 Access to Premium Videos: https://www.patreon.com/MathScienceTutor Facebook: https://www.facebook.com/MathScienceTutoring/ Here is a list of topics: 1. Ion - Ion dipole interactions of KF and CaO 2. Electrostatic Force and Lattice Energy- The effect of charge and ionic radii or size 3. How To Determine Which Ionic Compound has a Higher Melting Point - NaF vs KCl 4. Ion-Dipole Interactions - NaCl and H2O 5. Definition of a Dipole - Polar Molecules & Charge Separation 6. Dipole-Dipole Interactions of Polar Molecules - Partial Charge Electrostatic Attractions of CO 7. Hydrogen Bonding between Hydrogen, Nitrogen, Oxygen, and Fluorine 8. Intermolecular Forces vs Intramolecular Forces 9. Hydrogen Bonding vs Polar & Nonpolar Covalent Bonds 10. London Dispersion Forces & Van Der Waals Forces 11. Permanent Dipoles and Temporary Induced Dipoles - Distribution of electrons in electron cloud 12. Difference Between Atoms and Ions - Cations vs Anions - Number of Electrons and Protons 13. The relationship between Polarizability and Dispersion Forces 14. How To Determine the Strongest Intermolecular Forces In Compounds Such as MgO, KCl, H2O, CH4, CO2, SO2, HF, CH3OH, LiCl, CH2O, CO, and I2 15. The relationship between Boiling Point and Vapor Pressure 16. Straight Chained vs Branched Alkanes - Boiling Point and Intermolecular Forces - Surface Area 17. Ranking Boiling Point In Order of Increasing Strength for I2, Br2, F2, and Cl2 18. Polar and Nonpolar Organic Compounds - Polarity and Water Solubility 19. Ranking Boiling In Decreasing Order For HF, HCl, HBr, and HI 20. The effect of Molar Mass and Number of electrons on the Overall Intermolecular Force / LDF
DNA Structure - Base Pair Hydrogen Bonding and Melting Temperature
 
07:13
Moof's Medical Biochemistry Video Course: http://moof-university.thinkific.com/courses/medical-biochemistry-for-usmle-step-1-exam
Views: 20417 Moof University
Don't Make this Mistake with Hydrogen Bonding!
 
03:10
To see all my Chemistry videos, check out http://socratic.org/chemistry Here, I talk about the BIGGEST, most COMMON mistake people make with Hydrogen bonding. Watch this video so you never make this mistake!
Views: 34958 Tyler DeWitt
Properties of Water
 
06:51
Explore some properties of water with the Amoeba Sisters! It's all about those hydrogen bonds. Video has handout: http://www.amoebasisters.com/handouts Terms discussed include adhesion, cohesion, surface tension, specific heat - all made possible by those amazing hydrogen bonds. Support us on Patreon! http://www.patreon.com/amoebasisters Our FREE resources: GIFs: http://www.amoebasisters.com/gifs.html Handouts: http://www.amoebasisters.com/handouts.html Comics: http://www.amoebasisters.com/parameciumparlorcomics Connect with us! Website: http://www.AmoebaSisters.com Twitter: http://www.twitter.com/AmoebaSisters Facebook: http://www.facebook.com/AmoebaSisters Tumblr: http://www.amoebasisters.tumblr.com Pinterest: http://www.pinterest.com/AmoebaSister­s Instagram: https://www.instagram.com/amoebasistersofficial/ Visit our Redbubble store at http://www.amoebasisters.com/store.html The Amoeba Sisters videos demystify science with humor and relevance. The videos center on Pinky's certification and experience in teaching science at the high school level. Pinky's teacher certification is in grades 4-8 science and 8-12 composite science (encompassing biology, chemistry, and physics). Amoeba Sisters videos only cover concepts that Pinky is certified to teach, and they focus on her specialty: secondary life science. For more information about The Amoeba Sisters, visit: http://www.amoebasisters.com/about-us.html We cover the basics in biology concepts at the secondary level. If you are looking to discover more about biology and go into depth beyond these basics, our recommended reference is the FREE, peer reviewed, open source OpenStax biology textbook: https://openstax.org/details/books/biology *We mention that water makes up "3/4 of the Earth's surface" and we wish we had said "nearly" This number is going to be an estimate, but here is a source that puts it around 71%. https://water.usgs.gov/edu/earthhowmuch.html We take pride in our AWESOME community, and we welcome feedback and discussion. However, please remember that this is an education channel. See YouTube's community guidelines https://www.youtube.com/yt/policyandsafety/communityguidelines.html and YouTube's policy center https://support.google.com/youtube/topic/2676378?hl=en&ref_topic=6151248. We also reserve the right to remove comments with vulgar language. Music is this video is listed free to use/no attribution required from the YouTube audio library https://www.youtube.com/audiolibrary/music?feature=blog We have YouTube's community contributed subtitles feature on to allow translations for different languages. YouTube automatically credits the different language contributors below (unless the contributor had opted out of being credited). We are thankful for those that contribute different languages. If you have a concern about community contributed contributions, please contact us.
Views: 663903 Amoeba Sisters
Hydrogen Bonding | A-level Chemistry | AQA, OCR, Edexcel
 
03:05
https://goo.gl/31T06Y to unlock the full series of AS & A-level Chemistry videos for the new OCR, AQA and Edexcel specification. In today’s video we’re introduced to hydrogen bonding. We’ll look at how hydrogen bonds occur between electron deficient hydrogen and fluorine, oxygen or nitrogen. Next, we’ll discuss how hydrogen bonds affect the properties of water – more precisely why ice is less dense than water, why surface tension, melting and boiling points are high and how its viscosity is affected. The video concludes with an exam style question solved in detail.
Views: 3877 SnapRevise
Nitrogenous Base Pairing
 
04:45
This video explains how the nitrogenous bases pair up. Additionally, it explains what purines and pyrimidines are. Finally, this video goes over how many hydrogen bonds there are between certain nitrogenous bases. Support us!: https://www.patreon.com/learningsimply Twitter: https://twitter.com/learningsimplyv
Views: 2809 Learning Simply
Structure Of Nucleic Acids - Structure Of DNA - Structure Of RNA - DNA Structure And RNA Structure
 
03:52
In this video we cover the structure of nucleic acids, DNA and RNA. We discuss the components of each, and the differences between the two. Transcript with notes. There are 2 main types of nucleic acids, DNA or deoxyribonucleic acids and RNA or ribonucleic acids. Nucleic acids are large molecules made up of smaller molecules called nucleotides. DNA contains deoxynucleotides and RNA contains ribonucleotides. The nucleotides in these molecules are linked together through covalent bonds or bonds where electrons are shared between atoms. Let’s start by looking at DNA. The nucleotides that make up DNA have 3 parts, a phosphate group, a nitrogenous base, and a deoxyribose sugar, or 5 carbon sugar. The phosphate group consists of a phosphate bonded to 4 oxygen atoms, with one of the oxygen’s bonded to the number 5 carbon of the deoxyribose sugar. An important note here, the number 2 carbon of the deoxyribose’s sugar is bonded to a hydrogen atom. Carbon atom number one of the deoxyribose sugar is bonded to the nitrogenous base. There are 4 types of nitrogenous bases that can be found in DNA, adenine, shown bonded here, guanine shown here, cytosine shown here, and thymine shown here. As you can see, adenine and guanine have double ring structures, and cytosine and thymine have sing ring structures. Adenine and guanine are called purine bases and cytosine and thymine are called pyrimidine bases. DNA is a double stranded nucleic acid and its molecules take on a helical formation. Each helical chain has its phosphate-sugar group toward the outside, and the nitrogenous bases facing inwards towards the nitrogenous bases of the other chain. Each of the bases on one chain is joined to the base in the other chain through either 2 or 3 hydrogen bonds. Thymine and adenine are joined by 2 hydrogen bonds and cytosine and guanine are joined by 3 hydrogen bonds. Thymine and adenine are always a base pair, and cytosine and guanine are always a base pair. It is estimated that a DNA molecule contains more than 100 million of these base pairings, and in one individuals body, the sequence of these base pairings is the same in every DNA molecule. So this sequence of base pairing is unique to that individual. DNA is often called the information molecule because it contains the master code needed to make various RNA molecules and protein molecules in the body. Now for RNA. The nucleotides that make up RNA are very similar to those that make up DNA. RNA nucleotides have a phosphate group with the same structure as in DNA. They have a 5 carbon sugar, but the number 2 carbon is bonded to a hydroxyl OH group instead of a lone hydrogen atom, and this sugar is called ribose. It also consists of 3 of the same nitrogenous bases as DNA, cytosine, adenine, and guanine. But it does not contain thymine, instead it contains uracil, which is also a single ring structure like thymine, making it a pyrimidine base. Most RNA molecules are single stranded nucleic acids and many times they form a folded compacted structure with some hydrogen bonding taking place within base pairs of the molecule. These pairings are the same as in DNA, cytosine and guanine are a base pair, and uracil takes the place of thymine and pairs with adenine. RNA is important in the process of forming different proteins in the body, of which we will cover in depth in a later video.
Views: 14970 Whats Up Dude
Covalent Bonding of Hydrogen, Oxygen & Nitrogen
 
02:33
इस video में हम ‘octate rule’ study करने वाले हैं. हम octate rule की मदद से dot-cross diagram draw करके hydrogen, nitrogen और oxygen जैसे molecules में होने वाली covalent bonding आसानी से show कर सकते हैं! आपने ‘how atoms bond’ नाम के हमारे video में देखा होगा कि..जब hydrogen के दो atoms एक-दूसरे की तरफ approach करते हैं तो उनकी outer shells में overlapping होती है. overlapped shells इन atoms के दोनों electrons को share करती हैं. shared electrons को dot और cross के जरिये represent किया जाता है! क्या आप बता सकते हैं कि ये किस noble gas को represent कर रहा है? video रोंक के इसपे सोचिये. इसका correct answer helium होगा. helium की outer shell में भी..hydrogen के overlapping shells या outer shells की तरह, दो electrons ही होते हैं! आइये अब oxygen को देखते हैं. ये sixth group का atom है..क्या आप बता सकते हैं कि oxygen के एक atom की outer shell को fulfil करके उसे noble gas structure में तब्दील करने के लिए इसे कितने electrons की जरूरत होगी? The video is a contextualized and translated version (suitable for Indian audiences) of the original video (linked below). The original license allows the use of this video under CC-BY-NC domain of creative commons community. Hindi Script: Atul kumar Mishra Voiceover: Gopesh Kaushik Editor (Script and video): Team Learn India Learn LIL website: https://www.learnindialearn.com Original Video: https://www.youtube.com/watch?v=0HfN3CvXP2M
Views: 685 Learn India Learn
Hydrogen bond Meaning
 
00:25
Video shows what hydrogen bond means. A weak bond in which a hydrogen atom in one molecule is attracted to an electronegative atom (usually nitrogen or oxygen) in the same or different molecule.. Hydrogen bond Meaning. How to pronounce, definition audio dictionary. How to say hydrogen bond. Powered by MaryTTS, Wiktionary
Views: 1391 SDictionary
Chemistry: Hydrogen bonds (Intermolecular forces) | Alice Chen
 
03:53
Get this and all my slides + bonus material here: goo.gl/ES3OaU! The strongest type of intermolecular forces! They happen because of the difference in electronegativity (tendency for one element to attract the electrons in a compound) of the elements hydrogen and either fluorine, oxygen, or nitrogen (FON). If you have topics that you'd like me to cover, please leave a suggestion in the comments below! Thanks for watching!
Views: 4757 Alice Chen
Hydrogen bond
 
20:39
A hydrogen bond is the electromagnetic attractive interaction between polar molecules, in which hydrogen (H) is bound to a highly electronegative atom, such as nitrogen (N), oxygen (O) or fluorine (F). The name hydrogen bond is something of a misnomer, as it is not a true bond but a particularly strong dipole-dipole attraction, and should not be confused with a covalent bond. These hydrogen-bond attractions can occur between molecules (intermolecular) or within different parts of a single molecule (intramolecular). The hydrogen bond (5 to 30 kJ/mole) is stronger than a van der Waals interaction, but weaker than covalent or ionic bonds. This type of bond can occur in inorganic molecules such as water and in organic molecules like DNA and proteins. This video is targeted to blind users. Attribution: Article text available under CC-BY-SA Creative Commons image source in video
Views: 141 Audiopedia
Types of Hydrogen Bonds | Intermolecular and Intramolecular Bonding
 
03:52
There are two different types of hydrogen bonds. They are Intermolecular bonding and Intramolecular bonding. i) Intermolecular hydrogen bonding. This type of bond is formed between the two molecules of the same or different compounds. Some examples of the compounds exhibiting intermolecular hydrogen bonds are : Hydrogen fluoride and water. 1. Hydrogen fluoride, H F. In the solid state, hydrogen fluoride consists of long zig-zag chains of molecules associated by hydrogen bonds as shown in the figure. Therefore, hydrogen fluoride is represented as HFN. 2. Water In water molecule, the electronegative oxygen atom forms two polar covalent bonds with two hydrogen atoms. The oxygen atom due to its higher electronegativity acquires partial negative charge and the two hydrogen atoms acquire partial positive charge. The negatively charged oxygen forms two hydrogen bonds with two positively charged hydrogen atoms of two neighbouring molecules. Each oxygen atom is tetrahedrally surrounded by four hydrogen atoms as shown in visual. Hydrogen bonding in water results in a hydrogen bridge (HOH) network extending in three dimensions and the associated water molecule may be expressed as H Two O N. ii) Intramolecular hydrogen bonding. This type of bond is formed between hydrogen atom and Nitrogen, Oxygen or Flurine atom of the same molecule. This type of hydrogen bonding is commonly called chelation and is more frequently found in organic compounds. Intramolecular hydrogen bonding is possible when a six or five membered rings can be formed. Importance of H-bonding i) Life would have been impossible without liquid water which is the result of intermolecular H-bonding in it. ii) Hydrogen bonding increase the rigidity and strength of wood fibres and thus makes it an article of great utility to meet requirements of housing, furniture, etc. iii) The cotton, silk or synthetic fibres also own their rigidity and tensile strength to hydrogen bonding. iv) Most of our food materials such as carbohydrates and proteins also consist of hydrogen bonding. v) Hydrogen bonding also exists in various tissues, organs, skin, blood and bones.
Views: 1743 Easy Tips 4 Learner
Covalent Bonding in Water, Methane, Ammonia & Hydrogen Fluoride | Chemistry for All | FuseSchool
 
05:16
In this video we will look at covalent bonds in methane, ammonia, water and hydrogen fluoride. They are small, covalently-bonded molecules. The atoms within them share electrons because they have half full or more than half full valence shells of electrons: they are non-metals. Methane is a fuel, ammonia is used in household cleaners, water is a drink and the essence of life, and hydrogen fluoride is used to etch glass. The bonding in methane, ammonia, water and hydrogen fluoride shows a pattern: methane is carbon bonded to four hydrogen atoms; ammonia is nitrogen bonded to three hydrogen atoms; water is oxygen bonded to two hydrogen atoms, and hydrogen fluoride is fluorine bonded to just one hydrogen atom. Carbon, nitrogen, oxygen and fluorine appear in the periodic table in this order, moving along the second row from left to right. Carbon has four out of eight electrons in its outer shell, so makes four covalent bonds. Nitrogen has five out of eight electrons in its outer shell, so can make three covalent bonds to make the shell full. Oxygen has 6 electrons in its outer shell. It can bond with two hydrogen atoms to share 2 more electrons. It now has a full outer shell of 8 electrons. Ammonia has two electrons, called a lone pair of electrons, occupying the fourth position. These electrons take up space. Because electrons are negatively charged, lone pairs repel bonds even more strongly than bonds repel each other. This makes ammonia less symmetric than methane. The water molecule is bent in shape. Oxygen has two lone pairs. Negatively charged lone pairs are slightly attracted to the hydrogen atoms, so there is a weak attraction between molecules. Forces between molecules are a little stronger in water than in ammonia or methane. Water is liquid at room temperature and pressure, whilst ammonia a gas that is easily liquefied, and methane is a gas. Intermolecular forces are normally very weak in covalent compounds, but in water they are just strong enough to keep it liquid. A bit more energy is needed to overcome these forces and boil it. If water were not a liquid, life as we know it would be completely different! Ethanol contains carbon and oxygen bonding. The carbon atoms always form four bonds and the oxygen forms two. Remember, carbon forms 4 bonds, nitrogen forms 3 bonds and has one lone pair of electrons, and oxygen forms two bonds and looks bent. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind FuseSchool. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
Hydrogen bond
 
22:06
A hydrogen bond is the electromagnetic attractive interaction between polar molecules, in which hydrogen is bound to a highly electronegative atom, such as nitrogen , oxygen or fluorine . The name hydrogen bond is something of a misnomer, as it is not a true bond but a particularly strong dipole-dipole attraction, and should not be confused with a covalent bond. This video targeted to blind users. Attribution: Article text available under CC-BY-SA Creative Commons image source in video
Views: 332 encyclopediacc
Covalent Bonding | #aumsum #kids #education #science #learn
 
06:11
Covalent Bonding. Noble gases have complete outer electron shells, which make them stable. The coming together and sharing of electron pairs leads to the formation of a chemical bond known as a covalent bond. Two chlorine atoms come together and share their electrons to form a molecule of chlorine. In this way, each atom will have eight electrons in its valence shell. As a single pair of electrons is shared between them, the bond is known as a single covalent bond. A single covalent bond is represented by a single dash between the atoms. When two oxygen atoms come together, they each share 2 electrons to complete their octets. Since they share two pairs of electrons, there is a double bond between the oxygen atoms. Similarly, Nitrogen atoms share a triple covalent bond to form a molecule of Nitrogen.
Views: 1306344 It's AumSum Time
Covalent, ionic and hydrogen bonds
 
17:07
I do not own any of the videos. I just pieced them together solely for educational purposes.
Views: 3806 Rob Archibald
Polar Covalent Bonding
 
00:52
Follow us at: https://plus.google.com/+tutorvista/ Check us out at http://chemistry.tutorvista.com/organic-chemistry/polar-covalent-bond.html Polar Covalent Bond The polar covalent bond, called a polar bond for short, is a variation on the standard covalent bond. It is defined by a difference in electronegativity values of 0.4 or greater, the meaning of which shall be made clear below. All covalent bonds are polar to some extent unless the bond is between two atoms of the same element. It is best to start with a review of the standard covalent bond. This is the sharing of electrons between two elements in order to have 8 electrons in the outer shell. The only exception to this is Hydrogen, which is stable with 2 electrons in its outer shell. The structure of each element gives it a different electronegativity value. This value is effectively the strength of the pull of that atom's nucleus on the electrons around it. The higher the value the greater the pull. A covalent bond is electrons moving around two atoms; they are being shared. It is the difference between the electronegativity values that determines which atom gets the larger share of the electron's time. If the electrons spend more of their time around one atom out of the pair then that region will have more negative charge than the other atom. Carbon to Carbon Bond The first example is the standard Carbon to Carbon bond such as occurs in the alkane molecules. We are just considering the bond that these two atoms share without regard for any other bonds that this pair of atoms may be involved in. First we can draw the two atoms as shown below. The pair of electrons that form the bond are drawn between them. The values written below the atoms are from the electronegativities table. The difference is calculated which in this case is zero. A polar covalent bond occurs every time Hydrogen bonds with Nitrogen, Oxygen or Fluorine as these are the three elements with the highest electronegativity values. They all have a difference of 0.9 or greater with Hydrogen. These bonds are called polar because of the different charges. These act like magnets and so polar molecules are pulled toward each other, with opposite charges attracting. The polar covalent bond is commonplace. Water is a liquid at room temperature because of these bonds. Ammonia (NH3) dissolves readily in water because of these bonds. This model even explains why water expands as it freezes. A polar covalent bond involving Hydrogen with any of the three most electronegative elements of Nitrogen, Oxygen and Fluorine is especially strong and is called a Hydrogen bond. Please like our facebook page http://www.facebook.com/tutorvista
Views: 53245 TutorVista
Van der Waals forces | States of matter and intermolecular forces | Chemistry | Khan Academy
 
11:39
Van der Waals forces: London dispersion forces, dipole-dipole forces, and hydrogen bonding. Watch the next lesson: https://www.khanacademy.org/science/chemistry/states-of-matter-and-intermolecular-forces/introduction-to-intermolecular-forces/v/solubility?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Missed the previous lesson? https://www.khanacademy.org/science/chemistry/states-of-matter-and-intermolecular-forces/states-of-matter/v/phase-diagrams?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Chemistry on Khan Academy: Did you know that everything is made out of chemicals? Chemistry is the study of matter: its composition, properties, and reactivity. This material roughly covers a first-year high school or college course, and a good understanding of algebra is helpful. About Khan Academy: Khan Academy offers practice exercises, instructional videos, and a personalized learning dashboard that empower learners to study at their own pace in and outside of the classroom. We tackle math, science, computer programming, history, art history, economics, and more. Our math missions guide learners from kindergarten to calculus using state-of-the-art, adaptive technology that identifies strengths and learning gaps. We've also partnered with institutions like NASA, The Museum of Modern Art, The California Academy of Sciences, and MIT to offer specialized content. For free. For everyone. Forever. #YouCanLearnAnything Subscribe to Khan Academy’s Chemistry channel: https://www.youtube.com/channel/UCyEot66LrwWFEMONvrIBh3A?sub_confirmation=1 Subscribe to Khan Academy: https://www.youtube.com/subscription_center?add_user=khanacademy
Views: 750892 Khan Academy
Intermolecular Bonding (2/3) - Hydrogen Bonding
 
02:05
When Hydrogen is covalently bonded to either a Nitrogen, Oxygen or Fluorine atom, the large differences in electronegativities cause a strong dipole to form. This will form strong interactions between molecules and are called Hydrogen bonds.
Views: 4522 VolkScience
Bonding - Hydrogen Bonds
 
11:35
Objectives: 1. Describe Intermolecular Forces. 2. Identify the Intermolecular Forces that govern how the Hydrogen atom of one compound interacts with the Oxygen, Nitrogen or Fluorine of a neighboring compound. 3. Describe how these Intermolecular Forces are responsible for Water's high Boiling Point.
Views: 4 Dr. David Block
How to Draw Covalent Bonding Molecules
 
09:17
http://www.sciencetutorial4u.com This video explains how to draw covalent molecules and compounds. Contents: 0:08 Introduction 0:39 H2 1:25 HCl 2:23 Cl2 3:18 CH4 4:27 NH3 5:37 H2O 6:52 O2 7:57 N2 Thank you for watching. Please like, subscribe and share this video: https://youtu.be/_v8C1W0ChVM INTRODUCTION 0:08 Covalent bonding happens between non-metals. The electrons are shared between the non-metal atoms. This bonding allow atoms to have full outer shell of electrons. Only the electrons in the outer shell take part in the bonding. The number of electrons in the outer shell can be found out using the group in the periodic table. H2 0:39 Hydrogen is in group 1 so it has one electron in the outer shell. Hydrogen molecules have single bond which means they have two electrons in the overlap. HCl 1:25 Chlorine is in group 7 so it has seven electrons in the outer shell. HCl has single bond so it has two electrons in the overlap. Cl2 2:23 Chlorine is in group 7 so it has seven electrons in the outer shell. Cl2 (Chlorine molecule) has single bond so it has two electrons in the overlap. CH4 3:18 Carbon is in group 4 so it has four electrons in the outer shell. Methane has four single bonds. NH3 4:27 Nitrogen is found in group 5 so it has 5 electrons in the outer-shell. The Nitrogen atom is surrounded by three Hydrogen atoms, each providing one electron in the sharing (overlap). So Ammonia has 3 single bonds. H2O 5:37 Oxygen is found in group 6 so it has 6 electrons in the outer shell. Water has 2 single bonds. O2 6:52 Oxygen molecules have double bonds. Oxygen atom is found in group 6 so it has 6 electron in the outer shell. Therefore, in the overlap there are 2 pairs of electrons (which is 4 electrons in the overlap). This leads O2 molecules to have one double bond. N2 7:57 Nitrogen molecules have triple bonds. Nitrogen is found in group 5 so it has 5 electrons in the outer-shell. In the overlap, there are 3 pairs of electrons which are 6 electrons in the overlap. This causes Nitrogen molecules to have one triple bond. How to draw Ionic Bonds Teaching Video: https://youtu.be/ek-AN5K3AlI Ionic and Covalent bonds Teaching video: https://youtu.be/wQ3NJUKKcTU How to draw electron shell Teaching video: https://youtu.be/vuVNkQwSggo
Views: 61313 sciencetutorial4u
hydrogen bonding
 
01:04
translation: Hydrogen bonding connects two or more molecules together hence it being an intermolecular force. Hydrogen bonding is a special form of Dipole-Dipole forces that is specifically bonded between a hydrogen atom and either a Nitrogen, Fluorine, or Oxygen atom. Out of the three intermolecular forces, hydrogen bonding is the strongest. This is caused by hydrogen being highly partially positive and thus having a stronger attraction to a partially negative end of another molecule. This is shown in the top left corner of the slide; An Oxygen of a H2O molecule is partially negative and the partially positive end of a Oxygen on another H2O molecule is attracted and forms a hydrogen bond. The strength of the hydrogen bond leads molecules to be able to have higher boiling points than the other intermolecular forces; this is due to the fact that it is harder to break apart molecules that are formed by hydrogen bonds. Hydrogen bonding is still no match for the strength of intramolecular bonds. Hydrogen bonds are 1/10th the strength of covalent bonds.
Views: 12 Huddy Abel
Fixed Nitrogen Extraction Device Concept.
 
06:04
This idea came to me while mowing the lawns earlier today. Here Is displayed a concept device for the extraction of volitile Nitrogen from the atmosphere using nature base concepts.and producing fixed Nitrogen salts with minimal environmental impact. How it works. A glass sphere containing a high voltage plasma generator is central to cutting the three hydrogen bonds connected to a nitrogen atom in the atmosphere. The air in can be a gas of charged particles. The water vapour in can also be charged. An extraction of hydrogen is also required and can be used to power the plasma generator. The water out contains the fixed Nitrogen and goes through a series of filters and is returned to the system. Meanwhile the nitrogen salt caught in the filters is removed and processed. Let me know your thoughts.
Views: 88 a
Intermolecular Forces and Boiling Points
 
10:54
Why do different liquids boil at different temperatures? It has to do with how strongly the molecules interact with each other. Find out all the different ways, and how to use them to make predictions about matter! Subscribe: http://bit.ly/ProfDaveSubscribe [email protected] http://patreon.com/ProfessorDaveExplains http://professordaveexplains.com http://facebook.com/ProfessorDaveExpl... http://twitter.com/DaveExplains General Chemistry Tutorials: http://bit.ly/ProfDaveGenChem Organic Chemistry Tutorials: http://bit.ly/ProfDaveOrgChem Biochemistry Tutorials: http://bit.ly/ProfDaveBiochem Classical Physics Tutorials: http://bit.ly/ProfDavePhysics1 Modern Physics Tutorials: http://bit.ly/ProfDavePhysics2 Mathematics Tutorials: http://bit.ly/ProfDaveMaths Biology Tutorials: http://bit.ly/ProfDaveBio American History Tutorials: http://bit.ly/ProfDaveAmericanHistory
Views: 521899 Professor Dave Explains
Hydrogen Bonding
 
11:22
This chemistry video tutorial explains how to determine which molecules are capable of exhibiting hydrogen bonding. Examples and practice problems include the following molecules: H2O, CH4, CH3F, HF, CH3OH, CH3OCH3, CH3COOH, CH3CHO, H2S, NH3, PH3, (CH3)3N, (CH3)2NH, C2H4, C2H2, HOCH2CH2OH, CH3SH, and CH3CONH2. This video also discusses the difference between a hydrogen bond and a covalent bond and the difference between an intermolecular bond and an intramolecular bond. it shows the formation and hydrogen bonding that occurs between water molecules.
Class 11 Chemistry by anshudeep sir hydrogen bonding
 
15:44
please subscribe our channel for views other videos
Views: 10626 Personal Tutor
Types of Bond: Ionic, Covalent, Coordinate, and Hydrogen Bonds
 
02:42
Types of Bond in chemistry are explained in this video. The explanation of chemical bonding and different types of chemical bonds that are explained in this video include ionic bonds, covalent bonds, coordinate bonds, and hydrogen bonds. Ionic Bond: Ionic bonding is seen when two atoms form a bond by donating or accepting electrons. In this type of chemical bonding, there is an electrostatic attraction between the ions which are oppositely charged. Covalent Bond: In covalent bonding, two atoms share electrons to be able to attain the configuration of their nearest noble gas. It is also called a molecular bond and is characterized by electrons sharing between atoms. Coordinate bond: In the case of coordinate bonding, both the electrons that form the bond come from the same atom. Coordinate bond is also known as a coordinate covalent bond or a dative covalent bond. Hydrogen Bond: Hydrogen bonding is a type of electrostatic attraction and is seen when a hydrogen atom which is bonded to a highly electronegative atom (like Nitrogen, Oxygen, Fluorine) comes close to another adjacent atom having a lone pair of electrons. Get more information about the types of bond here- https://byjus.com/chemistry/ionic-covalent-and-coordinate-bond/ Thank you for watching. If you liked this video, please subscribe to our channel and press the like button. Click on the bell icon to turn on notifications and you will never miss out on our latest videos! Explore more content like this on our channel. Still have a doubt about this topic? Or Have an idea/ suggestion for a new video? Please comment below.
Views: 14922 BYJU'S
What Are Intermolecular Forces | Chemistry for All | FuseSchool
 
05:19
Learn what intermolecular forces are, the three most common types and the differences between them. An intermolecular force is simply an attractive force between neighbouring molecules. There are three common types of intermolecular force: permanent dipole-dipole forces, hydrogen bonds and van der Waals' forces. All these three forces are very much weaker than ionic or covalent bonds which bind atoms and ions together in elements and compounds. Permanent dipole-dipole forces: A polar molecule is one in which there is a permanent dipole, arising usually because the different atoms in the molecule have different electro-negativities. Hydrogen chloride is a polar molecule as the pair of electrons in the H---Cl bond are nearer the Cl atom because it has a greater electronegativity than the H atom. The two electrons of the covalent bond between the hydrogen and chlorine atoms are nearer the chlorine atom because of its greater electronegativity. Thus there will be an attraction between the chlorine atom of one molecule and the hydrogen atom of a neighbouring molecule. Hydrogen bonds: The second type of intermolecular force is the hydrogen bond. The permanent dipole in a covalent bond between a hydrogen atom and a fluorine, oxygen or nitrogen atom is particularly strong. Thus the attraction between the electron deficient H of one molecule and the lone pair of electrons on a fluorine, oxygen or nitrogen atom of another molecule is much stronger than the permanent dipole-dipole attraction between the two hydrogen chloride molecules. This particular type of dipole-dipole attraction between the electron deficient H of one molecule and the lone pair of electrons on a fluorine, oxygen or nitrogen atom of another molecule is given the special name of hydrogen bond. Even though a hydrogen bond has only about 5% the strength of a covalent bond, it does have significant effects on the physical properties of compounds. Were it not for hydrogen bonds both water and alcohol would be gases at room temperature and pressure. Hydrogen bonds explain the lower volatility of alcohols compared to that of alkanes of similar molecular mass. van der Waals’ forces: van der Waals’ forces are induced dipole-dipole interactions. They arise out of movement of the electrons in the shells.These induced dipole-dipole interactions, called van der Waals’ forces occur in all molecules, whether polar or not, but are the only intermolecular forces between non-polar molecules such as the halogens and the noble gases. As the number of electrons in the molecule increases, so do the van der Waals’ forces. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind FuseSchool. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
Hydrogen Bonding In One Shot | Organic Chemistry With Test Paper In Description
 
22:10
Download PDF : https://drive.google.com/open?id=1U8mni7Oi0tSwuegpNXTpbut4hQ-E2TUT Helios Educore Pvt. Ltd. Sunshine Business Park, Plot - 5A, Sector-94, Noida (UP) INDIA-201301 Chemistry Video Lectures to prepare for JEE-Main, JEE-Advanced, NEET and Board Exams. visit us : www.helioseducore.com Email : [email protected] Mob. : 08010000068 For Purchase : http://helioseducore.com/product-category/buy-book/ or Amazon Search Er Dushyant Kumar
Views: 10831 Helios Educore
3.1 - Water Structure and Hydrogen Bonding
 
03:07
Basic chemical structure of a water molecule
Views: 171829 gmcd1985
Why Does Ice Expand?: "Structure of Water" 1961 John Skarulis, William Pasfield; Hydrogen Bond
 
13:24
Support this channel: https://www.patreon.com/jeffquitney Physics & Physical Sciences playlist: https://www.youtube.com/playlist?list=PL_hX5wLdhf_JKIMNk88rKCkhpK73_qmHY Molecular Physics, Hydrogen Bond: Why does water expand when frozen, and have high surface tension? It is due to the electrostatic hydrogen bond, as explained in this film. Originally a public domain film, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied. The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original). https://en.wikipedia.org/wiki/Hydrogen_bond Wikipedia license: http://creativecommons.org/licenses/by-sa/3.0/ A hydrogen bond is a partially electrostatic attraction between a hydrogen (H) atom which is bound to a more electronegative atom or group, such as nitrogen (N), oxygen (O), or fluorine (F)—the hydrogen bond donor—and another adjacent atom bearing a lone pair of electrons—the hydrogen bond acceptor. Hydrogen bonds can be intermolecular (occurring between separate molecules) or intramolecular (occurring among parts of the same molecule). Depending on the nature of the donor and acceptor atoms which constitute the bond, their geometry, and environment, the energy of a hydrogen bond can vary between 1 and 40 kcal/mol. This makes them somewhat stronger than a van der Waals interaction, and weaker than fully covalent or ionic bonds. This type of bond can occur in inorganic molecules such as water and in organic molecules like DNA and proteins. Intermolecular hydrogen bonding is responsible for the high boiling point of water (100 °C) compared to the other group 16 hydrides that have much weaker hydrogen bonds. Intramolecular hydrogen bonding is partly responsible for the secondary and tertiary structures of proteins and nucleic acids. It also plays an important role in the structure of polymers, both synthetic and natural... A ubiquitous example of a hydrogen bond is found between water molecules. In a discrete water molecule, there are two hydrogen atoms and one oxygen atom. Two molecules of water can form a hydrogen bond between them that is to say oxygen-hydrogen bonding; the simplest case, when only two molecules are present, is called the water dimer and is often used as a model system. When more molecules are present, as is the case with liquid water, more bonds are possible because the oxygen of one water molecule has two lone pairs of electrons, each of which can form a hydrogen bond with a hydrogen on another water molecule. This can repeat such that every water molecule is H-bonded with up to four other molecules, as shown in the figure (two through its two lone pairs, and two through its two hydrogen atoms). Hydrogen bonding strongly affects the crystal structure of ice, helping to create an open hexagonal lattice. The density of ice is less than the density of water at the same temperature; thus, the solid phase of water floats on the liquid, unlike most other substances. Liquid water's high boiling point is due to the high number of hydrogen bonds each molecule can form, relative to its low molecular mass. Owing to the difficulty of breaking these bonds, water has a very high boiling point, melting point, and viscosity compared to otherwise similar liquids... The number of hydrogen bonds formed by a molecule of liquid water fluctuates with time and temperature... https://en.wikipedia.org/wiki/Water#Polarity_and_hydrogen_bonding Since the water molecule is not linear and the oxygen atom has a higher electronegativity than hydrogen atoms, it is a polar molecule, with an electrical dipole moment: the oxygen atom carries a slight negative charge, whereas the hydrogen atoms are slightly positive... Because of its polarity, a molecule of water in the liquid or solid state can form up to four hydrogen bonds with neighboring molecules. These bonds are the cause of water's high surface tension and capillary forces. The capillary action refers to the tendency of water to move up a narrow tube against the force of gravity. This property is relied upon by all vascular plants, such as trees. The hydrogen bonds are also the reason why the melting and boiling points of water are much higher than those of other analogous compounds like hydrogen sulfide (H 2S). They also explain its exceptionally high specific heat capacity (about 4.2 J/g/K), heat of fusion (about 333 J/g), heat of vaporization (2257 J/g), and thermal conductivity (between 0.561 and 0.679 W/m/K). These properties make water more effective at moderating Earth's climate, by storing heat and transporting it between the oceans and the atmosphere...
Views: 3880 Jeff Quitney
A Brief Introduction to Molecular Orbitals - Hydrogen, Helium, NItrogen and Oxygen
 
09:27
Professor Davis demonstrates the energetics and geometries of molecular orbitals in simple diatomic gasses like hydrogen, nitrogen and oxygen. Bonding and anti-bonding orbitals and their relative energies are shown. The monatomic nature of helium is also addressed.
Views: 2101 ChemSurvival
Super Common Mistake: Diatomic Elements
 
04:24
Shouldn't there be two atoms of every diatomic element? Many students get confused by the diatomic elements. Bromine, Iodine, Nitrogen, Chlorine, Hydrogen, Oxygen, and Fluorine always form diatomic molecules and pair up. You don't find just one atom of a diatomic element on its own. But then, why do many chemical formulas like H2O and LiBr, have just one atom of a diatomic molecule? We talk about this super common mistake and misconception.
Views: 57411 Tyler DeWitt
Hydrogen Covalent Bond (Loop)  3d Blender Animation
 
00:45
MORE INFORMATION---Av hydrogen bond is the attractive interaction of a hydrogen atom with an electronegative atom, such as nitrogen, oxygen or fluorine, that comes from another molecule or chemical group. The hydrogen must be covalently bonded to another electronegative atom to create the bond. These bonds can occur between molecules (intermolecularly), or within different parts of a single molecule (intramolecularly).[2] The hydrogen bond (5 to 30 kJ/mole) is stronger than a van der Waals interaction, but weaker than covalent or ionic bonds. This type of bond occurs in both inorganic molecules such as water and organic molecules such as DNA.Intermolecular hydrogen bonding is responsible for the high boiling point of water (100 °C) compared to the other group 16 hydrides that have no hydrogen bonds. Intramolecular hydrogen bonding is partly responsible for the secondary, tertiary, and quaternary structures of proteins and nucleic acids. It also plays an important role in the structure of polymers, both synthetic and natural. A hydrogen atom attached to a relatively electronegative atom is a hydrogen bond donor.[5] This electronegative atom is usually fluorine, oxygen, or nitrogen. An electronegative atom such as fluorine, oxygen, or nitrogen is a hydrogen bond acceptor, regardless of whether it is bonded to a hydrogen atom or not. An example of a hydrogen bond donor is ethanol, which has a hydrogen bonded to oxygen; an example of a hydrogen bond acceptor which does not have a hydrogen atom bonded to it is the oxygen atom on diethyl ether.xamples of hydrogen bond donating (donors) and hydrogen bond accepting groups (acceptors) Carboxylic acids often form dimers in vapor phase. A hydrogen attached to carbon can also participate in hydrogen bonding when the carbon atom is bound to electronegative atoms, as is the case in chloroform, CHCl3. The electronegative atom attracts the electron cloud from around the hydrogen nucleus and, by decentralizing the cloud, leaves the atom with a positive partial charge. Because of the small size of hydrogen relative to other atoms and molecules, the resulting charge, though only partial, represents a large charge density. A hydrogen bond results when this strong positive charge density attracts a lone pair of electrons on another heteroatom, which becomes the hydrogen-bond Acceptor.The hydrogen bond is often described as an electrostatic dipole-dipole interaction. However, it also has some features of covalent bonding: it is directional and strong, produces interatomic distances shorter than sum of van der Waals radii, and usually involves a limited number of interaction partners, which can be interpreted as a type of valence. These covalent features are more substantial when acceptors bind hydrogens from more electronegative donors. The partially covalent nature of a hydrogen bond raises the following questions: "To which molecule or atom does the hydrogen nucleus belong?" and "Which should be labeled 'donor' and which 'acceptor'?" Usually, this is simple to determine on the basis of interatomic distances in the X−H...Y system: X−H distance is typically ≈110 pm, whereas H...Y distance is ≈160 to 200 pm. Liquids that display hydrogen bonding are called associated liquids.
Views: 20894 Animation Devastation
Chemical Bonding Introduction: Hydrogen Molecule, Covalent Bond & Noble Gases
 
07:21
Chemical bonding introduction video shows how covalent bond means 2 hydrogen atoms can stick together to form a hydrogen molecule, H2. The video also explains why helium cannot form bonds and hence is called a noble gas. Subscribe to watch more online chemistry courses & science videos: http://www.youtube.com/channel/UCiX8pAYWBppIbtUZTfGnRJw?sub_confirmation=1 About Atomic School: Atomic School supports the teaching of Atomic Theory to primary school & science students . We provide lesson plans, hands-on classroom resources, demonstration equipment, quizzes and a Teacher's Manual to primary school teachers. Animated videos that clearly explain the scientific ideas supports learning by both teachers and students. As a teacher, you don't have to look anywhere else to implement this program. Our work has been verified by science education researchers at the University of Southern Queensland, Dr Jenny Donovan and Dr Carole Haeusler, who confirm that primary students are capable of learning much more complex scientific concepts than previously thought, and crucially, that they love it. Students run to class! The program has been trialed in Australian schools as well as schools in the Philippines, Iran and India. It is conducted as holiday workshops at the Australian Nuclear Science and Technology Organisation, the Queensland Museum as well as the World Science Festival. It has attracted wide media interest, including TV, radio and print, and the research data has been presented at prestigious American Education Research Association and Australian Science Education Research Association conferences. Atomic Theory underlies all the other sciences- genetics, electronics, nanotechnology, engineering and astronomy- so an early understanding will set them up for a more successful learning sequence for all their science subjects, and support their mastery of mathematics as well. We also have extension programs that cover Biology, Physics and Astronomy to an equal depth. About Ian Stuart (Email: [email protected]): The founder of Atomic School, Ian Stuart, taught Chemistry and Physics for 25 years at senior levels before he realized that his 8-year old son, Tom, could understand Atomic Theory at a much deeper level than he expected. After visiting Tom's class at school, he discovered that his peers could also grasp the abstract scientific concepts, as well as apply it usefully to the real world. Ian then developed a program to teach the advanced concepts of high school Chemistry, Physics and Biology to students 10 years younger than they normally would. He found that this engaged their interest in modern science early, and sustained it through to high school and beyond. It also sets them up for future success in their academic and career paths. Ian has a Bachelor's Degree in Chemistry from the University of Queensland and a Master's degree in Electrochemistry from the University of Melbourne. Connect with Atomic School on social media: http://facebook.com/AtomicSchool http://twitter.com/AtomicSchools http://instagram.com/AtomicSchools Video transcript: Let's do a thought experiment. Imagine a box filled with hydrogen atoms. Like billiard balls on a pool table, atoms actually move, and they do it in straight lines until they hit something … like another hydrogen atom. Oh! See that? They stuck together. They’re not separate hydrogen atoms any more, but a pair of hydrogen atoms moving together. There goes another pair. 4.1 When atoms join up like this, scientists call it a molecule. And they call the join between them a chemical bond. Here comes another hydrogen atom crashing into the hydrogen molecule. But this time it doesn’t stick. Instead it just bounces off. Hydrogen atoms bond once, and that’s it. They’re just like that. Pretty quickly all the hydrogen atoms will collide and pair off into molecules. They will keep hitting each other, but they'll just bounce off. Scientists like to have a shorthand way of writing this molecule thingi. Here’s one way to show it, with the hydrogen symbols joined by a stick to show the chemical bond between the atoms. Another way is to write H2, with the little 2 after the H and a bit lower. A number written this way is called a subscript. What do you think the 2 stands for? It counts the number of hydrogen atoms in the molecule. Easy, heh! So when we have a balloon filled with hydrogen gas, it really contains trillions of trillions of H2 molecules. Let's do another thought experiment. We'll go back to our box filled with hydrogen atoms, but this time put an oxygen atom in there too. When a hydrogen atom crashes into an oxygen atom, they stick together. But wait, when another hydrogen atom hits, it also sticks to the oxygen. What about a third hydrogen atom? No, that’s if for oxygen. It can only make 2 bonds and then it’s done.
Views: 127145 AtomicSchool
Nitrogen covalent bonding
 
00:17
Slowmation illustrating the principles of intramolecular N2 covalent bonding.
Views: 526 Daniel Czech
How Does Water Bond - Covalent Bonds | Chemistry for All | FuseSchool
 
02:40
Learn the basics about the covalent bonding of water, when learning about covalent bonding within properties of matter. Water is made from one oxygen atom and two hydrogens. The oxygen has 6 electrons in its outer shell, but it really wants to have 8 to have a full shell. The hydrogens have one outer shell electron, but want to have two. The atoms share their electrons, forming covalent bonds. So all three atoms have full outer shells, and create a water molecule. Water has two covalent bonds. In water, the bonding electrons spend most of their time nearer the oxygen atom, because it is more ELECTRONEGATIVE. This means that it is electron withdrawing. As the negatively charged electrons are nearer the oxygen atom, the oxygen atom becomes a little bit negative itself, while the hydrogens become a little positive. This is called delta positive and delta negative. Water doesn’t just have any old covalent bonds; it has what we call POLAR COVALENT bonds and is a POLAR molecule. This is really important as it affects how water behaves and reacts with other elements. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind The Fuse School. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
Types Of Chemical Bonds - What Are Chemical Bonds - Covalent Bonds And Ionic Bonds - What Are Ions
 
04:18
In this video we discuss how chemical bonds are formed, we cover ionic bonds and covalent bonds. Chemical bonding is important in many different functions of the body. Transcript and notes The interactions of 2 or more atoms mainly occur at the outermost shell, or energy level. The result of these interactions results in a chemical reaction. In atoms that have fewer or more than 8 electrons in their outermost energy level, reactions occur that result in the loss, gain, or sharing of electrons with another atom to satisfy the octet rule. The octet rule means that elements tend to combine so that each atom has 8 electrons in its outermost shell. This results in the formation of structures such as crystals or molecules. Two atoms of oxygen can combine with one atom of carbon to form carbon dioxide or CO2. There are two main types of chemical bonds, ionic bonds and covalent bonds. Ionic bonds are bonds where the transfer of electrons takes place. Let’s see how this type of bond works. So, here we have a sodium atom, which has an atomic number of 11, meaning it has 11 protons in its nucleus and 11 electrons in its shells or energy levels. Shell one has 2 electrons, shell 2 has 8 electrons and shell 3 has 1 electron. And here we have a chlorine atom, which has an atomic number of 17, so 17 protons and 17 electrons. It has 2 electrons in shell one, 8 in shell 2 and 7 in shell 3. We know that atoms want to have 8 electrons in their outer shell, so Sodium can give up one electron, and now it has 8 electrons in its outer shell, and chlorine can take that electron from sodium and that will give it 8 electrons in its outer shell. Since the sodium atom gave up an electron it now has 11 protons, which are positively charged, and 10 electrons which are negatively charged. This results in the formation of a sodium ion with a positive charge. An ion is an atom or molecule with a net electrical charge due to the loss or gain of an electron. Since the chlorine atom gained an electron, and now has 17 protons and 18 electrons, it is a chlorine ion with a negative charge. The positively charged sodium ion is now attracted to the negatively charged chlorine ion, and NaCl or table salt is formed. This is an ionic bond. So, ionic bonding is when an electron transfer takes place and generates 2 oppositely charged ions. Now for covalent bonds. Covalent bonds are chemical bonds that are formed by the sharing of one or more pairs of electrons by the outer energy levels or shells of two atoms. The 4 major elements of the body, carbon, oxygen, hydrogen and nitrogen almost always form covalent bonds by sharing electrons. So, for instance, 2 hydrogen atoms can bond by sharing a pair of electrons. Hydrogen is one of the exceptions to the octet rule of having 8 electrons in the outer shell, because it only has one shell. Let’s look at carbon dioxide or co2 again, which form a covalent bond. Oxygen has an atomic mass of 8, so 8 protons, and 8 electrons, 2 in its inner shell and 6 in its outer shell, so, oxygen atoms want 2 more electrons for their outer shell. Carbon has an atomic mass of 6, 6 protons and 6 electrons, 2 in the inner shell and 4 in the outer shell, so it wants 4 more electrons for its outer shell. They can make each other happy by sharing what they have. Oxygen atom number 1 can share 2 of its electrons and the carbon atom can share 2 of its electrons with oxygen atom number one, making oxygen atom number one happy. And oxygen atom number 2 can come in and like oxygen atom number one it can share two of its electrons and the carbon atom has 2 more of its own electrons that it can share with oxygen atom number 2. So now all 3 atoms are happy. By sharing 2 pairs of electrons in this situation a double bond has been formed, and double bonds are important in chemical reactions.
Views: 3306 Whats Up Dude
Covalent Bonding of Hydrogen, Oxygen & Nitrogen   Chemistry for All   The Fuse School
 
03:25
1 Chemical equations 2 Plate Tectonics 3 Hydrogen and Fuel Cells 4 What is an atom? Chemistry 5 Parts of an Atom Chemistry 6 Atomic Number and Mass Number 7 What are Isotopes? 8 Isotopes Example 9 Energy Levels and Electronic Configuration 10 Atoms Practice Exam Question 1 11 Continental Drift: Wegener's Theory 12 Covalent Bonding in Carbon Dioxide 13 Giant Chemical Structures - Part 2 14 Strong and Weak Alkalis 15 Electron Configuration of the First 20 Elements of Periodic Table 16 Properties of Sulfur 17 State Symbols in Chemical Equations 18 How to Measure Loss of Mass in a Reaction 19 What Are Serial Dilutions 20 Properties of Hydrogen 21 What Are Dilutions 22 What Are Intermolecular Forces 23 What are half equations 24 What are endothermic and exothermic reactions 25 What are structural isomers 26 How to do titrations 27 How is water treated in sewage works? 28 How to extract aluminium by electrolysis 29 Complete and Incomplete Combustion 30 How To Reduce Carbon Dioxide In The Air 31 How Can We Reduce Carbon Dioxide Emissions 32 The Nitrogen 33 How To Do Titration Calculations 34 How To Do Titrations 35 What is Electrolysis 36 Law of Constant Composition 37 How Do Atoms Bond - Part 2 38 What Are Radioactive Isotopes? 39 What Is The Natural Greenhouse Effect? 40 What Is The Rock Cycle? 41Covalent Bonding in Water, Methane, Ammonia & Hydrogen 42 What Are Designer Polymers 43 What Are Intermolecular Forces 44 What are Allotropes? Non-Metals 45 The Ozone Layer - Part 1 46 What is the pH scale 47 What Is The Hole In The Ozone - Part 2 48 How To Separate Solutions, Mixtures & Emulsions 49 How Are Metals Used - Gold Copper Aluminium Steel 50 Group 2 - Alkaline Earth metals 51 What Is Group 2? Alkaline Earth Metals 52 How Do Atoms Bond 53 What Is An Element, Mixture And Compound 54 How To Harden Vegetable Oils Through Hydrogenation 55 How To Calculate Gas Volumes 56 What Are Giant Chemical Structures 57 How Are Strong and Weak Acids Different 58 How Does The Periodic Table Work 59 What Is Carbon Neutral and Biofuels 60 What Are Dot and Cross Diagrams - Part 1 61 What Are Dot and Cross Diagrams - Covalent Bonds - Part 2 62 How Does Electroplating 63 What Is The Law of Conservation of Mass 64 What Are The Green Chemistry Principles - 65 What Are The Green Chemistry Principles - Energy Efficiency 66 What Are The Green Chemistry Principles - Renewable Feedstocks 67 What Are The Uses Of Aluminium? How Does It Anodise 68 How Does Global Warming Effect The Environment 69 What Is The Carbon Cycle - Part 1 70 What Is The Carbon Cycle - Part 2 71 How Does Water Bond - Covalent Bonds 72 How To Use Moles - Part 2 73 How To Use Moles - Part 1 74 How To Use Moles - Part 3 75 What Are Carbon Footprints 76 What Are Covalent Bonds 77 How To Balance Equations - Part 1 78 How To Balance Equations - Part 2 79 What Types of Chemical Industries Are There 80 What Are The Green Chemistry Principles - Design for Degradation 81 What Are The Green Chemistry Principles - Reduce Derivatives 82 What Is An Atom - Part 1 83 What Is An Atom - Part 2 - Isotopes 84 What Are The Reactions Of Halogens 85 How Has The Atmosphere Changed 86 How Does Water Treatment Work 87 What Are The Green Chemistry Principles - Atom Economy 88 What Are Redox Reactions? (Oxygen Exchange) 89 What Is Water Pollution 90 How Do Atoms Bond 91 What Is Thermosetting and Thermosoftening Polymers 92 What Is Avogadro's Number - The Mole 93 Uses of Polymers 94 What Is Benzene 95 What Shapes Do Simple Molecules Make 96 What Is Plasma 97 Decomposition of Hydrogen Peroxide 98 Reactions of Iron 99 What Are Catalytic Converters 100 What Are Allotropes of Metalloids and Metals 101 How Is Nitrogen Used 102 How Is Oxygen Used 103 Future Extraction Methods - Bioleaching and Phytomining 104 Covalent Bonding of Hydrogen, Oxygen & Nitrogen 105 Ionic Bonding of Lithium Fluoride & Potassium Oxide 106 Solubility Curves 107 What Is The Electrochemical Series 108 Behaviour of metallic structures 109 Properties of water 110 Displacement reactions and reactions in solutions 111 Reactions of metals with water 112 What makes things alkali 113 Moles in equations 114 Electron exchange in oxidation-reduction reactions 115 What are catalysts? 116 Photosynthesis and respiration 117 Electrolysis of Molten Compounds 118 Reactions of Copper 119 Extraction of oxygen and nitrogen from liquid air 120 Other acids 121 Calculating molar volumes using experimental data 122 Empirical formulae from percentage composition 123 Ionic equations 124 Acid + Metal 125 Ammonium Salts and Solutions 126 Neutralisation of Alkalis 127 Solubility Rules 128 Stomach Acid 129 What are salts? 130 Barium Meals - why are they useful?
Views: 13 Vijay S
Hydrogen Bonding | Chemistry | Chegg Tutors
 
04:56
Hydrogen bonding is an intermolecular or intramolecular attraction that occurs between molecules with hydrogen bond donors and molecules with hydrogen bond acceptors. Hydrogen bond donors are molecules that have a hydrogen attached to an electronegative atom (for example, hydroxyls or amines). Hydrogen bond acceptors are molecules that have a lone pair of electrons located on an electronegative atom (for example, oxygen, nitrogen, or fluorine). Hydrogen bonds are not as strong as covalent and ionic bonds but are stronger than van der Waals interactions. Hydrogen bonding is responsible for the high boiling point of water and is important for the organization of complementary chains of base pairs in DNA and RNA. ---------- Chemistry tutoring on Chegg Tutors Learn about Chemistry terms like Hydrogen Bonding on Chegg Tutors. Work with live, online Chemistry tutors like Jamie B. who can help you at any moment, whether at 2 pm or 2 am. Liked the video tutorial? Schedule lessons on-demand or schedule weekly tutoring in advance with tutors like Jamie B. Visit: https://www.chegg.com/tutors/Chemistry-online-tutoring/?utm_source=youtube&utm_medium=video&utm_content=managed&utm_campaign=videotutorials ---------- About Jamie B., Chemistry tutor on Chegg Tutors: Harvard University, Class of 2013 BA Mathematics & English, MS Applied Mathematics major Subjects tutored: SAT, SAT II Latin, Geometry, Chemistry, Set Theory, Physics, R Programming, Latin, Discrete Math, Computer Science, MATLAB, English, Psychology, Writing, Literature, Geometry (College Advanced), Biology, Linguistics, Study Skills, Number Theory, Statistics, Applied Mathematics, Numerical Analysis, Linear Algebra, Basic Math, and Calculus TEACHING EXPERIENCE I'm a certified Math and English teacher for grades 8-12 in Massachusetts. Right now, I focus on gifted students with learning disabilities, ADHD, and mental health challenges who may be underperforming and overstressed in their classes. I can work with you if you have diagnosed LD or simply learn best outside of a traditional lecture and textbook format. If I don't know about something, I will tell you that openly, I'll point to where you might be able to find that information, and I'll learn more about it for next time. I'm strongest as a teacher when I'm working one-on-one and my favorite part of teaching is "diagnosing" where a student's thinking might be leading them astray (or ahead!)I got my Masters at Harvard in Applied Math, focusing on statistics and advanced mechanics/physics applied to biology. I taught and tutored Organic Chemistry, Precalculus, Calculus, proof-based Linear Algebra and Real Analysis, and Intro to Applied Math (for majors) at Harvard. I also work with student writing for classes, projects and graduate applications as a tutor in my undergraduate house. I've tutored everything from 5th grade math to competitive math teams to graduate school pure math and engineering. I've worked with Master's Engineering students studying for the TOEFL alongside high school sophomores in my Saturday volunteer creative writing classes, and I've tutored undergraduates at Harvard and helped develop curriculum in proof-based math and numerical experimentation-driven freshman physics. EXTRACURRICULAR INTERESTS I'm from Brooklyn, NY. I'm a city kid who could stare at the stars all night, which I do when I visit my family in rural Canada. I love biking, choral singing, performing poetry, teaching in all settings and with all people, and crisis management and education for mental health. I'm always looking to get into new art forms, learn new languages and pursue things where my gaps lead me. I also have difficulty keeping a straight face for more than a few minutes (or a paragraph) at a time. Want to book a private lesson with Jamie B.? Message Jamie B. at https://www.chegg.com/tutors/online-tutors/Jamie-B-224764/?utm_source=youtube&utm_medium=video&utm_content=managed&utm_campaign=videotutorials ---------- Like what you see? Subscribe to Chegg's Youtube Channel: http://bit.ly/1PwMn3k ---------- Visit Chegg.com for purchasing or renting textbooks, getting homework help, finding an online tutor, applying for scholarships and internships, discovering colleges, and more! https://chegg.com ---------- Want more from Chegg? Follow Chegg on social media: http://instagram.com/chegg http://facebook.com/chegg http://twitter.com/chegg
Views: 1717 Chegg
Chemical Bonds(Covalent) in Hydrogen,Nitrogen,Oxygen &Fluorine-Dr.Amal K Kumar
 
05:30
This is an Chemical Edutainment video.The animation in this video is designed to assist school students to learn chemistry easily through entertainment. I imposed the background song ( Indian classic 'Desh rag' ) to create an attention catching effect.
Views: 1010 Dr. Amal K Kumar
The effects of Hydrogen Bonding for IIT | JEE | AIIMS |  with Sharad Pratap Singh
 
16:03
If H2O had no H-bonding, its boiling point would have been -100 C.. In general, (e, e) conformations are more stable. Cis-1,3-dimethylcyclohexane exists preferably in more stable (e, e) conformation and is more stable than trans-isomer having (a, e) conformation. In case of cis-cyclohexane-1,3-diol, (a, a) conformation is more stable due to strong chelation stabilisation which is strong enough to overcome di-axial interactions. Hydrogen bonding is not possible in (e, e) interactions.cis-cyclohexane-1,3-diol is again more stable than trans-1,3-diol having (a, e) conformation. In case of Cis-1,4-cyclohexanediol, to make room for intramolecular hydrogen bonding for the sake of greater stability the molecule assumes the boat conformationdeviating from the general concept of chair conformation in which H-bonding is not possible because of the distance of separation of the two –OH groups. Cis-cyclohexane-1,4-diol stay for significant periods of time in a boat conformation is the boat conformations. Cis-1, 4-di-t-alkyl cyclohexane -2, 5-diols exist largely in the boat & twist-boat form rather than the chair form. Why HF forms H-bonding with ethyne even though it is non-polar in nature? Why is the boiling point of water higher than that of ammonia or hydrogen fluoride? In the case of ammonia, the amount of hydrogen bonding is limited by the fact that each nitrogen only has one lone pair. In a group of ammonia molecules, there aren't enough lone pairs to go around to satisfy all the hydrogens. Methoxymethane is a gas at room temperature.. BP: Glycerol (295 C) Glycol (198 C) C2H5OH (78C) Water has maximum density at 4°C as above 4°C some hydrogen bonds are broken leading to a decrease in the density. Why is Ethylene glycol the main ingredient in many antifreeze mixtures for automobile radiators? Nitrogen of NH4+ does not take part in hydrogen bonding. The cohesion-adhesion theory of transport in vascular plants uses hydrogen bonding to explain many key components of water movement through the plant's xylem and other vessels. Intramolecular hydrogen bond formation involves one molecule & gives rise to ring formation or chelation & is most favourable when there is formation of 5-, 6- or 7- membered ring. [Remember that the hydrogen is not counted in the ring size.] (Why?) The addition of strong electron-withdrawing groups destabilizes the carbonyl and tends to form stable gem-diols. Two examples of this are chloral, and 1,2,3-indantrione which form stable hydrates (also stabilised by intramolecular H-bonding). Although ketones tend to not form gem-diols, F3C-CO-CF3 exists almost entirely in the gem-diol form when placed in water. A solution of formaldehyde in water (formalin) is almost exclusively the hydrate. Boric acid contains planar (BO3)3- units bound together through hydrogen bonds forming a trigonal planar layer structure. Hydrogen atoms act as bridge between two oxygen atoms of different (BO3)3- units. Intramolecular hydrogen bonds also contribute to stabilisation of the gauche" or "Boat" conformation in some cases. The Gauche effect characterizes any gauche rotamer which is more stable than the anti rotamer. This effect is present in X−CH2−CH2−Y; X, Y = -F, -OH or -NH2 1,2-ethanediol, 1,2-ethanediamine, 2-aminoethanol 2-fluoroethanol 3-fluoropropanol etc. The two strands of the famous double helix in DNA are held together by hydrogen bonds between hydrogen atoms attached to nitrogen on one strand, and lone pairs on another nitrogen or an oxygen on the other one. Glycerol is used in cosmetics due to greater heat of vaporization. Glucose or sucrose are soluble in water inspite of presence of many carbons due to presence of large number of –OH groups but cyclohexane or benzene (simple six membered ring compounds) are insoluble in water. The boiling point of the 2-methylpropan-1-ol isn't as high as the butan-1-ol because the branching in the molecule makes the van der Waals attractions less effective than in the longer butan-1-ol Check text based posts @ https://sharadpra.wordpress.com/ You guys are welcome to request any doubt topic or problem etc. YOU CAN POST YOUR DOUBTS/QUERIES/REQUESTS IN COMMENT SECTION Also comment your views and we are happy to have your reactions to improve ourselves. Click subscribe to follow my channel and Stay tuned.

Diclofenac sandoz 50mg notice me lyrics
Augmentin 600 mg suspension
Bupropion hcl sr 150 mg terramonte
Is astelin over the counter drug
Zestril 10 mg side effects